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\ ABSTRACT

"Defects in the core as a solution to n-person superadditive characteristic
function games are examined and the process of achieving a "}easonable"Jcbre
by changing the value of the grand coalition is studied. A new unique solution

concept, the ”ﬁomocore,“fis proposed based on the “homomo11ifier” notion
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interpreted as the result of implicit bargaining and weighted averages of
coalitional worth. Thereby unreasonable cores are excluded but a core-like
dominance property on the average is maintained. It also yields a measure of

Z-*gperational efficiency” where the game may be interpreted as an economic
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situation of decreasing marginal productivity.
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L HOMOCORES, CORES AND OPERATIONAL INEFFICIENCY IN SUPERADDITIVE
a . N-PERSON GAMES
by

A. Charnes and B. Golany

1. Introduction

The core, as a solution concept for an n-person characteristic function
':‘ game is often criticized for three major deficiencies. It can be empty, thus
leaving us with no solution. It may consist of an infinite number of
imputations, each having equal a priori claim to be the final agreement among
f‘ the players. It can also include only one imputation, but one which is not
plausible in reality. (See the BL2 game in Charnes, Littlechild and
. Sorensen [1973]). Other important criticisms and suggestions of directions
#- for modifications were made in L. Johanssen's working papers at The Econometric

Institute of The University of Oslo in 1981 and in Aumann [1981].

Yet we know that with respect to the concept of dominance, the core has
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the important advantage of stability. In order to move toward such stability,
Charnes and Kortanek [1967] showed that any empty core game can be turned
into one with a core by changing at most one value of the characteristic
function, (e.g. the value of the grand coalition v(N)).

However, as we show here, it is not always possible to find an amount

which, added to the v(N) of an empty core game, yields a single member core.

DARARARAnE Ti t o i C‘.‘.ﬁ

g On the other hand, the "homocore", shortly to be defined, which is based on
a minimal increase in v(N) (and for which one needs to consider only one
level of the coalitional inequalities which define the core) always exists

and is unique.
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Besides dominance stability, other properties of solutions are also

important. Thus Charnes/Rousseau/Seiford [1977] developed the notion of an
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incremental propensity to disrupt, and the "homomollifijer" as a conclusion
to an implicit process of bargaining. By definition, the characteristic
function (designated "coalitional worth" by Aumann [1981]) gives the value
which a coalition can achieve regardless of the actions taken by the other
players. It does not directly measure "anti-coalitional strength", namely--
the power to block formation of other coalitions by preempting members. To
bring this strength into consideration in characteristic function form, we
use the homomollifier process as a "mapping" of anti-coalitional strength
into changes of coalitional worth value.

The homomollifier of any really essential superadditive game is essential
with empty core. (By "really" we mean some (n-1)-person subgame is essential.)
Thus, by converting the original game into its homomollifier, we bring all
rea?]y essential games (with core, without, or with a unique core) to the
same starting point. Then we raise the value of v(N) until all the
cardinality levels of the coalitional inequalities which define the core are
satisfied. Then we obtain a unique imputation, based on the average value for
each player over all the coalitions in which he participates at the level
which yields a core, which is projected downward to sum to the original v(N).
This imputation we call the "homocore." For not really essential games, the
homomollifier is inessential and we take as the homocore its unique imputation
(which is the core).

An interesting yield of this new concept is brought out in relating
game-1ike situations to economic situations of decreasing marginal productivity
in the second part of this paper. Employing this analogy we show that this
concept gives a reasonable measure of the relative "operational efficiency"
of different production units.

But one needs also to consider whether or not a solution notion corresponds

to what people might select in practice. Thus Heaney [1978] reviewed attempts




to find an acceptable solution concept for real large project situations which
required allocation of costs to participants. Allocations in the core were
indeed attractive to these real participants. Selton/Schuster [1968] also
studied psychological criteria and effects. But in an intensive experimental
comparison of core, Shapley value, nucleolus and other notions, Michener,
Macheel, Depies and Bowen [1983] showed that use of the homomollifier to
reshape the characteristic function gave easily the best correspondence

to human choices. We show here that the homocore does substantially better

than the best of these on this experimental data.

2. Unique Core Imputations

Let (N,v) be a characteristic function game where N = {1,2,...,n} is the
set of players and v is a non-negative function defined on all subsets of N

with v(P) = 0. Let x be a payoff vector with elements X3 i=1,2,...,n,

and let S be any subset of N with |S| as the cardinality of the set S.

Theorem 2.1: Any inessential game has a unique imputation in the core:
x(i) = v(i) , VieN.

Proof: An inessential game is defined by I v(i) = v(N). According to the
i€eN
definition of the core, x should satisfy:

x(S) =2 v(S) ¥YSCN and Lx, = v(N).
€N
Thus x(i) > v(i), VieEN. Supose that for a certain jeEN , x(j) > v(j). Then

o £ x(i) > £ v(i) = v(N). This cannot happen since £ x(i) = v(N). Hence
i i€N i€eN i€N

- the only possible imputation is x(i) = v(i), VieN.
Q.E.D.
f‘ We define the homocore as this unique imputation wherever the homomollifier

is inessential, i.e., iff all (n-1)-person subgames of the original game are

inessential (see [13]).
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Theorem 2.2: A superadditive essential game has a unique imputation in the

core if 1

(1) v(N) = =T 2: v(S) = max 2: v(S)
|S|=n-1 k<n |S| I)ISI =k
(2) v(S) [ISI 2 viN-i} - (n-1- |s|)§3v{n 1}] ,
¥|S| < n-1

Proof: Here we need to construct the system of inequalitiés which define the

core. Notice that:

(i) The system consists of n levels: x(S) > v(S), |S| = 1,2,...,n.
(ii) The number of inequalities in the Kkt 1evel s (:) .
(iii) The number of times each X5 (i=1,2,...,n) appears in all the

inequalities of the k" tevel is (}71) -

The conditions for x to be in the core are:

X4 2 vi
XZ. ? V2 } 1st level
Xn 2 Vo
X1+, 2 V1,2
. 2nd level
*n-1 * X ? Yh-1,n
§1+x2+... T % ¥1,2,3,....n-2
A E n-Zth level
x3+x4+... ...+xn_1 * X 2 v3’4’ N
SUPAEE R Z¥1,2,3,....0-1
n-1th level
x2+x3+... +X -1 + xn ] v2,3‘ N
X Rt cotx o = vN) 1 nt" tevel.
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I. Summing the n inequalities in the (n-l)th level (in which each X; appears

n-1 times) we get:

(n-1) -« x(N) > s v(S). Now substituting x(N) = v(N) from the
S|=n-1

B ASTLIR 00 2 S, rh it i O
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nth level we have:

N>l X (s
v 25 |s|=n-1v( :

h

. t . 2
II. Doing the same for the n-2" level gives: v(N) >-T——~TT———Y 2: v(S)
n-l n‘2 |S|=n"2

& III. Doing the same for the k™" Tevel gives: v(N) 3o 20 v(s)

by (k) 151

To satisfy the new set of inequalities (III above), it is sufficient

to satisfy the single inequality, v(N) > max —ﬁ%jj- E:V(S). By
slen(j57-1) 9

condition (1) this occurs for |S|=n-1. Before we reduce the original system

of 2"-1 inequalities to the subset in which |S|=n-1 plus the last equation

(a total of n+l inequalities), we have to make sure that no exceptional

Ty
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inequality in the levels |S| < n-1 will cause a contradiction. Therefore we

-

Ef require condition (2) to hold for all |S|<n-1. Since our imputation in the

3

t! core is to be x; = v(N) - v{N-i} we must have:

i‘ . n

x v(s) < [v(N) - v{N-i}] = [S|v(N) - DviN-i} = L Fvin-i) - Tvid-i)
'i i€S i€sS i=1 i€S

h.

~T

i€S

{1s ] 3 viN-i S ] [ . .
= i:{ -1 v{N-i} + l—+ 2oviN-i} = == | S| 2o viN-i} - (n-1-|S )Z:V{N-l}] .
[" n-1 ifs w1 || |1¢s S| i€s
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Thus condition (2) guarantees that all the constraints in [1] for |S| < n-1
are redundant to the question of determining the core. Now we are left with

precisely n+l inequalities:

x1+x2+... ...+xn_1 2 v1,2,...,n-1
x1+x2+... "'+xn-2 +xn 2 v1,2,...,n-2,n
(2) : g
x2+x3+... ...+Xn 2 V2’3’.‘-’n
= =1
X ot cootx = v(N) = p |S|§\-IV(S)

Now suppose for a solution (xl,...,x ) that in one of the inequalities

n

above the left side is strictly greater than the right. Then, adding the

first n inequalities we get the contradiction n-1 x(N) > Z: v(S), since
n-2 Is|=n-1

x(N) = v(N) =.E%T|S|2: lv(S)_ Hence, what we really have are n+l equations.
-

Subtracting each of the first n from the last one, we get uniquely

1,2,-.-,”‘1

n-1 1,2,...,n-2,n

(3)

’ ,...,n

the imputation we employed in condition (2).




F Tl g myw e @£ N YUY TERL L Y W e -
sttt W e TS W TR T T T e T AT TR P .
~TT T T FlM i A e A N o - R -

r- ad hd o . . Cdi - - . [ . - . .

Each of the elements on the right side is non-negative due to superadditivity.

Also, by superadditivity, Xs > v(i). Thus we have a unique, feasible so]ution.1

Q.E.D.

2.1 3-Person Empty Core Games

It is not difficult to show that any superadditive 3-person, empty core

game can be represented in 0-1 normalized form as follows:

N = {1,2,3}
v(@) = v(i) =0, i=1,2,3
v(12) = a, v(13) = b, v(23) = c, where a,b,c €[0,1] , atbtc > 2.
v(N) = 1.
Lemma 1: For any (N,v) game as defined above, the maximum over k < n in
condition (1) of Theorem 2.2 occurs for k = 2.

Proof: v is a real, non-negative function and

Q.E.D.
Lemma 2: For any (N,v) game as defined above, condition (2) of Theorem 2.2

always holds.

;f Proof: Since n = 3, the only sub-coalition level we need to check is

Eﬁ: [S|=1 < n-1. For this level we substitute in condition (2):

o

'::'-: — —_ ——

1Our' homoco: . »°1u n under these hypotheses on v'(N) will be:

x(i) = [v'(N} - v(N-i)] - %4%%7 , 151,250,050

v where v'(N) =-—LI Y v(S). It is the solution to system (3) projected by
n=% Is{=n-1
v(N)/v'(N) to satisfy x(N) = v(N).




....

-
e, s-1)
v(s) =0<3 [(1).)_‘,V(N-1) - (3-1-1)Ev(N-1)] = QELD 52
i¢s i€S

btc-a ’ S={3}.

Without loss of generality, we check S = {1}. Employing the empty core

property a+b+c > 2 we have: atb+c > 2 => a+b-c > 2 - 2¢c = a+2-c >1-c.

But 1 - ¢ > 0 because c€[0,1], so we have a+g-c > 0. By changing the names

a, b, ¢, we also have checked S = {2} and S = {3}.
Q.E.D.

Hence we know that by “"raising" v(N) to equal Ei%ig we satisfy the first

part of condition (1) in Theorem 2.2. Since condition (2) always holds we have

a unique solution based on Theorem 2.2:

This is an imputation for the new v(N) since a+b+c > 2. Next, to get an

imputation from this,valid for the old v(N), we have to "reduce" x(N). This

2

is done by multiplying each above X by Frovegl

Thereby, we have for any (N,v) game as defined above, the unique solution:

. =1 - ¢ .y -.q._.2b ., .q__2
1 a+tb+c °’ 2 a+b+c ° 3 a+b+c
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Going back to the n > 3 situation, if 2: v(S) < max-———L——- E:V(S),

1
s n-1 |S|=n-1 |S|<n (Igﬁl) (S|

then in general there is no minimal value of v(N) which yields a single member
core. For, if the maximum occurs at the kth level, then in the last stage of
the previous proof we would have (E) equations in n unknowns. For 1 < k < n-1,
(2) > n, which yields a rectangular matrix. This will have a solution only if
the additional conditions (preventing contradiction at the n-kth level of the
original set, and yielding (E) -n equations to linear independent of the

other n equations) are satisfied--which is not true for the general case.
Theorem 2.3: The homomollifier of a superadditive really essential game has an

empty core.

Proof: The homomollifier is a really essential superadditive constant sum game.

:f (See [13] and [4] Theorem 3.7.) Consider the system which defines the core in
5 the form:

&

i """
&: x(Sl) > w(Sl)

!

-, x(N—Sl) > w(N—Sl)

g :

. x(N) = w(N)

d

p-

A
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If for any Sl’ x(Sl) > w(Sl), we have a contradiction when we add since
x(Sl) + x(N-Sl) > w(Sl) + w(N-Sl) = w(N) ,
i.e. x(N) > w(N).
Thus we have only x(S) = w(S) , ¥YSC N. But this yields an inessential game,
a contradiction. Therefore, in an essential game, the condition above cannot

hold and we have an empty core.
Q.E.D.

Since we have decided to use the homomoliifier as a representative of
an implicit bargaining process, we shall always have an empty core game to
start with. For this kind of game, although we know ([2] proposition 6)
that by raising v(N) we can have a non-empty core game, the core will not

necessarily be a unique imputation (Corollary 2.1). To achieve uniqueness

while coming close to (or equaling) the downward projection of a core solution,

we propose the following "homocore" solution.

3. The Homocore Solution

gi" The homocore is defined by:

= k(i) = LT Bgs) -kl Fos) | M 5oz,
o |s|=k IS |=k 2 w(s)

- i€sS |S|=k

o

where w is the homomollifier of the original game v, and k satisfies:

13 c 1 T s
max w(s) - w(s) .
Isten (s171) 18 (ko) 15k
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Here we first changed w(N) to equal max 1 dow(s).

—_— Then instead of
Sj<n (j572;) IST

system (2) of Theorem 2.2 we have:

Xp#xot. .. Xy W o k-1,k
2 W
§1+x2+... +xk_1 +xk+1 : 1,2,...,k-1,k+1
X PXgteee X TAXyZ Wy o k-1,n
XpHRoteee X ot X Z Wy oo k=2,k,k+]
XpHotees ¥ o¥X Xy Z W o k=2,K k42
Xp¥hotee 4Xp_o¥x, Xy 2 Wy oL k=2,k,n
Xn-k+1" " ce Xy 2 W LN
=1
XpFRoteis LK et —<n_1)|SEEiW(S)
k-1

For the same reason explained in Theorem 2.2, all the inequalities are actually
equalities. Now we sum for each x(i) all the rows in which x(i) occurs. This

yields the following set of n equations:

(ko) X0+ (53) xtw1) =

|S|=k
i€S
Thus
-1 -2 -2 _
[(2-1) - (2-2)] x(i) + (373) IS%EkW(S)
ieS
and
n-2
(n:“) x(i) + ££§§) w(S) = w(S) (substitute x(N) from the
k-1 (1) Isi=k I5|=k
- i€s last equation)

PRV PP T DA Y W aparery e R PO PP L. R
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(-4} x(i) = l 2 w(s) - XL ZkW(S)

5|;k e
(3
so that
x(i) = 7] lEkw(S) - &1 ka(S)
<) [is]= S|=
(1 i 51
(ko) wim

Multiplying this result by to project our imputation down

in value to sum to the original w(N), we get:

2 w(s)
(k1) | B 1
SR = ARl e Sl &
S
(k1) |S|=kw< )
(n-1) 2 w(S)
‘$l§k k-1
- N 1€ k-l
"M Swe) Mk
IS |=k

Theorem 3.1: The homocore solution satisfies:

(1) x(N) = v(N)

(2) s uniquely determined.

(n-1) 25 w(S)
|S|=k -
Proof: (1) x(i) = w(N) U - kel
roo ) x(d w( n-k)ls?:kw(s) =

x(N)

n
™=
x

—
-
~—
[
z
_—
=
o
™M=
s
m
w
1
>
]
—
}

12
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& solution obtained in Theorem 2.2.

Proof: For k = n-1 we get:

(n-1) 2 w(s)
|S[=g-1
x(1) = w(N) L - (n-2) | =

: 2 w(s)
;' 'S|=n‘1
5 > w(s)
:! |S|=n-1W %E% Z w(S)
o = W(N) j€S _ ISl""n-l
Ef: w' (N) w' (N)
v

YIS Y

[.'~'-’-“".,.~v'-L'LL-"-;.-- PP ISP I LI T W W S ey . -~ PR S P WP e

n-kK

p i n T
., > X w(s)
¢ i1 S|k
_ -1 i€S n(k-1)
=w(N) |2 =
n-k 2 W(S) n-k
|S|=k
[ & l }Ew(S)
- n-1 S|=k n(k-1) | - (n-1)k - n(k-1)
w(S)
L [S|=k
N = w(N) = v(N)
(2) From the construction of x, we have a set of n equations
g! in n unknowns with only one unknown in each equation.

F Q.E.D.

- Theorem 3.2: In the special case for which k = n-1, the homocore is the
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( 2 w(S) Z w(S)> + 2 2 w(s) - 3 w(s)
|S|=n-1 |S|=n—1 1S|=n-1 |S|=n-1
_ W(N) €S
w'(N X n-1
[ W(N-1) + wN-i) + X w(s)
- w(N |S]=n-1 -
w | n-1
N [ -1 a_ wN
- u) _IISE (s) - %_-l-w(n-n] - u [w (N) - w(N 1)]
Q.E.D

We next consider some examples.

Examples 3.1

3.1.1, The BL2 game: v(1) = v(2) = v(3) = v(23) = 0 ; v(12) = v(13) = v(123) =

The homomollifier is: w(l) = -% s w(2) = w(3) =0 ; w(12) = w(13) = w(123) =

w(23) = 3
The homocore is: Xy = % [(1+41) - 3(1+1+2)] TT?%T{)' = % (k=2)
Xy =Xy = 2 [(142) - HI+3) ] ey = 7 5 (x(N=D)

3

This result actually reflects a situation in which players 2,3 join

to block player 1 from getting everything (as given by the

original core). Therefore, the homomollifier evidently represented an implicit
process in which players 2,3 created a union which had the same bargaining

power of player 1, thus causing a fair division of the total v(N).

3.1.2, An empty core game: v(1) = v(2) = v(3) = 0 ; v(12) = v(123) =
v(13) = 5/6 ; v(23) = 4/6. The homomollifier is:w(1) = % ; w(2) = {5
w(3) = 0 5 w(12) = w(i23) = 1 ; w(13) = J§ 5 w(23) = 11-3

PP GO U PR W G U Sy J




/A A oead g Lo et e SR s - - Aa Bl R A AL i i S it PR ouus iR SUNh SN MME S aguh ol SSED. SRR SR SRS i~y

15

. 51  n-1 k-1 1
The homocore is: k=2 2: w(S) = B nk - 2 3 —= =% ;
lsl=2 1 n‘ n- -2'
x(1) =325 x(2) =355 x(3) =25 x(N) = 1 = v(N).

Note that in Examples 3.1 our games satisfied the condition

1

—_— v = max n- v . e next exampie shows a more complex

L T v(s) T\ 2v(s). Th le sh 1
IS|=n-1 1S|<n\|S|-1)[S]|

situation.

Example 3.2

An empty core, superadditive and essential 5-person game:
v(ii) =0 , V¥i=1,2,...,5
v(ij) =0 , V¥i,j=1,2,...,5 , i#j

v(12j) = 3.5 , V¥j=3,4,5
v(34j) =3, V¥j=1,2,5
v(135) = v(145) = v(235) = v(245) = 4

v(ijkl) = 4.5 , ¥i,j,k,1=1,2,...,5 , i#j#k#]
v(12385) = 5 .
1

Here  max (FT)ZV(S) =

‘ 5.91666. The homomollifier is:
IS|<n \|S|-1/]|S] |S|=3

w(i) = 0.1 , V¥i=1,2,...,5
w(12) w(25)
w(13) = w(14) = w(23)
w(34) = w(35) = w(45)
w(12j) = 4.4 , ¥j=3,4,5
w(34j)
w(135)

w(15) 0.8

w(24) = 0.4
0.6

4.2 , ¥j=1,2,5
w(145) = w(235) = w(245) = 4.6

w(ijkl) = 4.9 , Vvi,j,k,1=1,2,...,5 , i#i#k#]
w(12345) = 5
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- Again  max —E%T_' 2w(s) = ' 7.366. Therefore k
u HENGONIN |s[=3

(s |Sl-1

k-1

W 1 =-% and so:

1.1086 , x(N) =5 .

=1.018 , x, = 1.018 , x, = 0.9276 , Xq = 0.9276 , Xg

X1 2 3
The example above has no minimal value which added to w(N) yields a

unique solution.

Theorem 3.3: For any essential superadditive empty core game w, the solution
to the following extremal problem gives the minimal value w'(N)

for which the game has a non-empty core:

min x(N)

s.t. x(S) 2 g(S) , ¥ |S| <n

Proof: The dual to the problem above is: min w@G

where G' = {g(1),9(2),...,9(n),g9(12),...} ,
ki and Y is a matrix of entries 1,0, whose 1 entries in each row correspond to
the elements of S. It is clear that the dual is consistent (take
wT = {1,1,...,1,0,911..,0} and remember that Y has the identity matrix Inxn

n (2"-2)-n
as its first n rows). It is also clear that the primal is consistent since

there is no upper bound on x(N). Hence, by the linear programming duality states
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Now if we

g{:: } in which the

'(S),
conditions for the existence of the core hold. o
Q.E.D.
Example 3.3
Consider the game in 3.2. As shown before max ———%—-—- E:V(S) = l 5.91666. |
Ishn (15]1) 11 /s1=3

This creates a 11-row 5-column matrix which is not consistent. Using the
simplex method (applied on the formulation in Theorem 3.2) gives a minimal

value v'(N) = 6.1666 (for which x, = X, = 1.333 3 X3 = Xg = 0.8333 3 x; = 1.8333

1
is an imputation). This is the minimum which guarantees a non-empty core.
Applying the same method to the homomollifier of the game gives w'(N) = 7.4666
with a projected imputation: X = Xy = 1.026 ; X3 = Xy = 0.893 ; Xg = 1.16
(x(N) = 5). This solution is rather close to our homocore solution found in

Ex. 3.2. but the problem with it is that it is not necessarily a unique one.

However, we shall later employ w'(N) = 7.466 in our efficiency measure.

4, A Measure of Operational Inefficiency

Consider a superadditive characteristic function game as describing a
situation in which we have a pool of workers to perform some production
project. There are n workers in the pool, each with various skills and
experience. Their efforts in coalitions are compensated in amounts as
given by the characteristic function. Different groups (coalitions) of
workers can achieve different norms of production, and assuming correspondence
between the produced quantities and payments, we assume the higher values of
v(S) are for higher production. As we know, in reality there are no perfect
production situations. We propose to describe operational efficiency in
this analogy in terms of the incremental value added to the value of the

grand coalition which will achieve a non-empty core.
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We define EN y » our measure of operational efficiency by
w'(N) - w(N) _  w(N
EN,v 41- w' (N) oW
Let us consider some examples.
Example 4.1:
The BL? game has v(1) = v(2) = v(3) = v(23) =0, v(12) = v(13) = v(123) = 1.

The homomollifier gives w(N) = 1 , w'(N) = 4/3 hence:

D
EN,V A3 " 0.75

This corresponds to the fact that in the BL? situation there is a
redundancy of one little man. His marginal contribution, when he joins a

team of the big man and the other little man, is zero!

Example 4.2:

Modify the BL? game to v(1) = v(2) = v(3) =v(23) =0, v(12) = v(13) =1,
v(123) = 2.

This is clearly a more efficient situation since the output of the total team
is higher. But note that while the relative improvement over that of the
first 1ittle man is infinite (v(12)/v(1) = =), that over the second is a
relative improvement of 1 (v(123)/v(12) = 1. This means that although it is
a better situation it is not a perfect one. Let us check the value of EN,v

for this game:

Here w(l) = 2/3 , w(2) = w(3) = 1/3 , w(12)
w(123) = 2, w'(123) = 7/3, s0 Ey = 7% = 6/7

w(13) = 5/3 , w(23) = 6/3 ,

0.857.

As expected, the efficiency measure here is higher than in the BL? game.

A AP IO S PP S G S S WA AT CLT S Wy S k_\_"-Ak;_J
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Example 4.3:

v(s) =1, V|S| =8,9,10 ; v(S) =0, ¥|S| = 0,1,...,7
[t is obvious that we have a redundancy of two workers in this situation.
Using the same method we get:

w(10) = 1, w'(10) = 10/8 5 Eyy | = 1573

= 0.8

Here we see a new aspect of the efficiency measure. It can help in
comparing situations with different numbers of workers. As will be shown
in the next example, the number of redundant workers is an indicator of the

level of inefficiency.

Example 4.4
v(s) =1, v|s| =6,7,8,9,10 ; v(S) =0, ¥Y|S| = 0,1,...,5
Here we have four redundant workers compared to only two in the previous

example. Here w(10) =1 , w'(10) = 10/6, hence E = 0.6.

=1 _
10,v  10/6

Changes in efficiency may be anticipated only when the outputs (v(N),v(S)),
or the inputs (number of workers for the same mission), are changed. In the

next example we reduce the number of workers for the same task as in Example 4.4,

Example 4.5
v(s) =1, |S| =9,8,7,6 3 v(S) =0, ¥|S| =0,1,...,5
Here w(N) =1 ; w'(N) = 1.5, En v > T%g = 0.66. Thus, the reduction gives

an improvement in the efficiency measure.

Theorem 4.1: For any superadditive and essential game v, the measure of
operational efficiency satisfies 0.5 < EN v < 1.
1]
Proof: We choose w'(N) = _E%T" 3 w(s) (see definition in section 3).
(k-1)'5"k
The constant sum property gives w(N) = w(S) + w(N-S) , YSCN
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Consider first EN v < 1. For all S, w(N) = w(S) + w(N-S). In particular

for S =k ,
} Zw(N) = 1 zw(s) + 1 2 w(N-5)
(k1) 151k (k1) 1s;=c (§7) 18T
So,
D wN) = (2) w(N) = w'(N) + 1 Ew(N-S) < 2w'(N)
< () (k1) 151k

There is only one case in which the above inequality can be an equality and this

occurs when Kk =% . Then we have ?\"}Z w(N) < 2w'(N), implying EN v € 1. Inall
other cases we have w'(N) > —n}—l 2 w(N-S). It is unnecessary to check

(k-l) -
k <-2- since Wn'f w(N) > 2w(N) , while the other side is less than 2w'(N). So

it is clear that Ey < 1. On the other hand when k >g , ?1"7,12 w(N) < 2w(N).

H]

It is enough to check the extreme k = n-1.

n
?\'r-li' w(N) = w'(N) + FI-T > w(i) < w'(N) + n_ET w(N) (because the game is
0 : i=1 essential)
t. Thus w(N) < w'(N) or EN.v <1.
? 1

"_~'-7 Next consider E > 0.5. It is sufficient to consider w'(N) = 1 S
;_-‘. N’V n_l - W( ).
E' (k-l) |S]=k
- It is clear that k > 3 (because of superadditivity Z w(S) < 2 w(N-S)

2
e |S{=2 |S]=n-2
r—7 2( n
= ?
& since in both we have the same number of elements in the sum). Next we know
&
i (again because of superadditivity) that lEw(s) <(:) w(N).
o |S|=k
L
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=N
(1) 1sf= ) WN) = § wiN).
k-1 k-1
Hence,
wiN) _ e . K Byt the least value for k is ¥ and then Ey, . > 0.5
w' (N) Nov " n 2 N,v

Q.E.D.

5. A Test of Homocore Predictions

A rare opportunity to experientially test the homocore as a predictor of
human divisional agreements was afforded by the data collected at the University
of Wisconsin by Michener et al [1982]. (This follows several important
evaluative papers, [8, 9, 10, 11].) Six different 5-person characteristic
function games were repeatedly "solved" by 180 students acting as players.

(The games are defined in Table 3 of their paper.) The actual imputations
reached were compared to the predictions of various solution concepts (the
Shapley value, the Nucleolus, the 2-Center, the Disruption value) each applied
to a set of modifications of the characteristic function. A discrepenacy
measure was defined as follows:

n 1/2

d-= ggi(xi - pi)z , Wwhere X; is the actual payoff to player i
and Pj is the predicted payoff. Michener et al concluded from the discrepancies
presented in their Table 6 that the homomollifier (of Charnes, Rousseau and
Seiford [4]) was superior to the other modifications of the characteristic
function in describing the "worth" of each coalition. This independently
supports our idea of calculating the homocore from the homomollifier and not
directly from the characteristic function.

Applying the homocore as a predictor and comparing it with the other

predictions by the addition of one line to Table 6 of [7], we obtain the

following results:

R L

e




22

Mean Discrepancy Scores as a Function of Representation and Solution Concept

Solution Characteristic Counter Equal
Concept Function Homomollifier Mollifier Homomollifier Complement
v(S) k(S) e(S) h(S) v(S)
Shapley value 17.25 19.90 17.25 15.92 17.25
. Nucleolus 24.76 20.42 16.11 15.81 16.09
{ | 2-Center 19.71 21.94 19.71 17.97 19.71
- -
- Disruption
- value 16.49 19.74 17.78 16.49 19.74
Homocore -- -- -- 11.58 --

Average over

*
Solution 19.55 20.50 17.71 16.55 18.20

*This average does not include the homocore score.

Clearly none of the other predictions come close to the discrepancy score
achieved by the homocore. It is 1.365 times smaller than its closest competitor
(also derived from the homomollifier). This table of results aiso suggests
that the complicated threat, counter-threat, counter-counter threat, etc.
regressions involved in solution notions such as the bargaining set or the

nucleolus may not be good representations of the factors in real behavior

for reaching divisional agreements. But, both for the latter conclusion

and for the conclusion of superiority of the homocore, much more experimentation

" “'.~.' e A

is evidently required.

]
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